Nlp_자연어처리이해_3강
Written on July 16th, 2018 by Hyeju Kim자연어처리에 대한 이해 3강
1. Dialogue Modeling Problem
2. Recurrent Language Model
x = ‘I am going to the school’ (x1, x2, … xt)
p(x) = p(x1, x2, …, xt) joint prob
= p(xt | x1, x2… xt-1) * p(x1,x2,…,xt-1) |
= p(school | I, am, …, the )*p(I,am,…,the) |
= conditional probabiltiy * marginal probability
= p(school | I, am, …, the )p(the | I,am,…,to)p(I,am,…,the) |
RNN은 이 확률을 쉽게 계산할 수 있다. hidden layer. 이전 정보들을 가지고 있다. (context infomation)
RNN 에서 softmax(Wh+b)
3. Neural Machine Translation
4. Naive Seq2Seq Model
5. Context Based Model
6. Persona-based Model
[5] input data / output data
[6] data -> number
앞에는 그냥 data 생성부분.
Feel free to share!