인공지능및기계학습개론_3강2
Written on July 15th, 2018 by Hyeju Kim1. Optimal classification란?
$f^* = argmin_fP(f(X)\neq Y)$
classifier는 곡선형태인 확률분포를 통해 risk를 줄임 -logistic
curve를 만들어보는게 나이브 클래서파이어
2개의 class만 있을 경우
$f^* = argmax_{Y=y}P(Y= y | X=x) = argmax_{Y=y}P(X=x | Y= y)P(Y=y) = argmax_{Y=y}Class Conditional Density* Class Prior$ |
2. Conditional Independence
$x_1,.. x_i$ are conditionally indepenced given $y$
p(X=<x_1,…,.x_i | Y=y) -> P(X_i= x_i | Y=y) |
Marginal independence vs. Conditional Independence (A,B)
Marginal Indepdence
X and Y and independent if and only if P(A)=P(A | B) |
Conditional Independence
P(A | B,Y) = P(A | Y) |
Feel free to share!